skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Xie, X"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Yang, DN; Xie, X; Tseng, VS; Pei, J; Huang, JW; Lin, JCW (Ed.)
    Extensive research in Medical Imaging aims to uncover critical diagnostic features in patients, with AI-driven medical diagnosis relying on sophisticated machine learning and deep learning models to analyze, detect, and identify diseases from medical images. Despite the remarkable accuracy of these models under normal conditions, they grapple with trustworthiness issues, where their output could be manipulated by adversaries who introduce strategic perturbations to the input images. Furthermore, the scarcity of publicly available medical images, constituting a bottleneck for reliable training, has led contemporary algorithms to depend on pretrained models grounded on a large set of natural images—a practice referred to as transfer learning. However, a significant domain discrepancy exists between natural and medical images, which causes AI models resulting from transfer learning to exhibit heightened vulnerability to adversarial attacks. This paper proposes a domain assimilation approach that introduces texture and color adaptation into transfer learning, followed by a texture preservation component to suppress undesired distortion. We systematically analyze the performance of transfer learning in the face of various adversarial attacks under different data modalities, with the overarching goal of fortifying the model’s robustness and security in medical imaging tasks. The results demonstrate high effectiveness in reducing attack efficacy, contributing toward more trustworthy transfer learning in biomedical applications. 
    more » « less
  2. Yang, DN; Xie, X; Tseng, VS; Pei, J; Huang, JW; Lin, JCW (Ed.)
    Extensive research in Medical Imaging aims to uncover critical diagnostic features in patients, with AI-driven medical diagnosis relying on sophisticated machine learning and deep learning models to analyze, detect, and identify diseases from medical images. Despite the remarkable accuracy of these models under normal conditions, they grapple with trustworthiness issues, where their output could be manipulated by adversaries who introduce strategic perturbations to the input images. Furthermore, the scarcity of publicly available medical images, constituting a bottleneck for reliable training, has led contemporary algorithms to depend on pretrained models grounded on a large set of natural images—a practice referred to as transfer learning. However, a significant domain discrepancy exists between natural and medical images, which causes AI models resulting from transfer learning to exhibit heightened vulnerability to adversarial attacks. This paper proposes a domain assimilation approach that introduces texture and color adaptation into transfer learning, followed by a texture preservation component to suppress undesired distortion. We systematically analyze the performance of transfer learning in the face of various adversarial attacks under different data modalities, with the overarching goal of fortifying the model’s robustness and security in medical imaging tasks. The results demonstrate high effectiveness in reducing attack efficacy, contributing toward more trustworthy transfer learning in biomedical applications. 
    more » « less